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by expanding the search to identify naturally available direct 
levoglusoan utilizers or modify the existing fermentation bio-
catalysts (yeasts and bacteria) with direct levoglucosan path-
way coupled with tolerance engineering could significantly 
improve the overall performance of these microorganisms.
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Introduction

The growing environmental threat posed by air pollution, and 
the increasing oil demand have forced the world in general 
and China in particular to find alternative and sustainable 
solution to fossil fuel. Air pollution is a serious issue for most 
of the developing countries, killing more people than malaria, 
tuberculosis, AIDS, and breast cancer [127, 134, 135, 193]. 
The observed air pollution contributes to an estimated 1.6 
million deaths every year in China (0.7–2.2 million people 
per year at 95 % statistical confidence), or about 4400 people 
a day and around 17 % of the total deaths in China [159]. The 
ever increasing gap between domestic oil supply and demand 
is another reason driving China to seek alternative fuels, espe-
cially biofuels in transportation sector [20]. The quantity of 
domestic crude oil produced in China is supposed to remain 
constant around 200 million tons by 2020 [180] and even by 
2050 [107]. Meanwhile, the projected oil demand for domes-
tic purposes will increase to 600–700 million tons by 2030 
and 700–800 million tons by 2050 [27]. According to the 
research of the International Energy Agency (IEA), biofuels 
could contribute about 27 % of the total transportation fuel by 
2050. The projected use of biofuels has the potential to avoid 
CO2 emission (2.1  gigatonnes/year) into the atmosphere if 
produced in a sustainable manner [74].

Abstract  This review highlights the potential of the pyrol-
ysis-based biofuels production, bio-ethanol in particular, and 
lipid in general as an alternative and sustainable solution 
for the rising environmental concerns and rapidly depleting 
natural fuel resources. Levoglucosan (1,6-anhydrous-β-d-
glucopyranose) is the major anhydrosugar compound result-
ing from the degradation of cellulose during the fast pyrolysis 
process of biomass and thus the most attractive fermentation 
substrate in the bio-oil. The challenges for pyrolysis-based 
biorefineries are the inefficient detoxification strategies, 
and the lack of naturally available efficient and suitable fer-
mentation organisms that could ferment the levoglucosan 
directly into bio-ethanol. In case of indirect fermentation, 
acid hydrolysis is used to convert levoglucosan into glucose 
and subsequently to ethanol and lipids via fermentation bio-
catalysts, however the presence of fermentation inhibitors 
poses a big hurdle to successful fermentation relative to pure 
glucose. Among the detoxification strategies studied so far, 
over-liming, extraction with solvents like (n-butanol, ethyl 
acetate), and activated carbon seem very promising, but still 
further research is required for the optimization of existing 
detoxification strategies as well as developing new ones. In 
order to make the pyrolysis-based biofuel production a more 
efficient as well as cost-effective process, direct fermenta-
tion of pyrolysis oil-associated fermentable sugars, especially 
levoglucosan is highlly desirable. This can be achieved either 
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Bio-ethanol is a biofuel produced from sugar, starch, or 
cellulose-based feedstocks. Production of bio-ethanol from 
sugar-based crops, such as sugar cane, sugar beet, sweet 
sorghum, and fruits is the most efficient and easiest pro-
cess since yeast and bacteria can readily ferment the sugar. 
However, yeast and bacteria cannot directly ferment the 
starch-based feedstocks, such as corn, wheat, milo, barley, 
potatoes, and cassava, hence enzymes are used to convert 
the complex polysaccharides into monomeric sugar units 
before fermentation [30]. Currently more than 90  % of 
the world’s bio-ethanol is produced from edible feedstock 
(sugars and starch-based), which is also known as the “first 
generation” bio-ethanol feedstock [117], and the bio-refin-
eries based on edible food are known as “first generation” 
bio-refineries, while the fuel is identified as “first genera-
tion” biofuel [29, 52, 123]. In 2014, United States was the 
world’s leading bio-ethanol producer with 14.3 billion gal-
lons (bg) followed by Brazil with 6.2 bg, together account-
ing more than 84  % of the world bio-ethanol production 
[57]. Asian countries and especially China are now on the 
way for bio-ethanol production but still lag behind USA 
and other developed countries, as shown in Table 1.

The advantages of using first-generation feedstock for 
bio-ethanol production are the high sugar content of the 
feedstock material, relatively simple conversion processes, 
and the available well-developed technology. But unfortu-
nately, first-generation bio-ethanol feedstock is also used for 
food and feed purposes, which means that its usage would 
compete with food and feed industries for feedstock, fertile 
agricultural land, and fresh water [160, 178, 203]. There-
fore, the first-generation biofuel becomes controversial due 
to food vs fuel debate, ethical, and environmental reasons.

To overcome the limitations of first-generation biofuels, 
the concept of second-generation biofuel based on nonedible 
lignocellulosic biomass, such as forestry wood, agricultural 
residues (sugarcane bagasse, grasses, straw etc.), and munic-
ipal solid wastes was introduced [22, 54, 80]. The biomass 
feedstock used to produce second-generation biofuels con-
tain high amount of sugars in the form of polysaccharides, 
which can be converted to second-generation biofuels [52, 

112]. Lignocellulosic biomass has numerous advantages over 
the first-generation feedstock such as, it is widely distributed, 
inexpensive, as well as abundantly available, further it does 
not compete with food, freshwater, and agriculture land [23, 
112]. However, converting lignocellulosic feedstock is much 
more difficult task than sugar and starch-based biomass due 
to the recalcitrance nature of lignocellulose materials. Cel-
lulosic feedstock is converted into bio-ethanol in three steps: 
pretreatment, hydrolysis, and fermentation. The pretreatment 
step releases the cellulose and hemicelluloses by breaking 
down the complex structure of lignocelluloses, hydrolysis 
is applied to convert the cellulosic and hemicellulosic poly-
saccharides into simple sugars, and finally the sugars are 
fermented by yeast or bacteria to produce bio-ethanol [55]. 
The traditional conversion methods aimed to release sugars 
from lignocellulosic biomass involve either the use of acids 
or enzymes in bulk quantities, which is no way easy and 
economical [47, 158]. The other drawback is that during the 
pretreatment and hydrolysis, along with the release of fer-
mentable sugars, a variety of unwanted by-products are also 
produced from the lignocellulosic biomass. These by-prod-
ucts have been reported to be highly toxic to the enzymatic 
hydrolysis step as well as microbial fermentation.

In recent times, pyrolysis process has attracted attention 
as an efficient and faster method for the depolymerization 
of lignocellulosic biomass compared to acid hydrolysis or 
enzymatic hydrolysis. Pyrolysis oil, also commonly called 
bio-oil, is a product of biomass processing in a process 
called fast pyrolysis. Depending on the type of lignocel-
lulosic material and the operating conditions used during 
pyrolysis, bio-oil can contain up to 33  wt.% of levoglu-
cosan, an anhydrosugar that can be readily hydrolyzed to 
glucose [96]. Although several technologies are available 
that can be used to convert sugars into advanced generation 
biofuels (butanol, hydrocarbons, etc.), fermentation of sug-
ars to produce ethanol is still the dominant technology in 
practice [31, 190].The concept of converting pyrolytic sug-
ars into bio-ethanol was initially proposed by Shafizadeh 
and Stevenson [168], since then several researchers studied 
the feasibility of producing bio-ethanol from pyrolysis oil 

Table 1   World fuel ethanol 
production by country or region 
(million gallons)

Source: F.O. Licht, cited in renewable fuels association, ethanol industry outlook 2007–2014 reports. Avail-
able at http://www.afdc.energy.gov/data/10331

Countries 2007 2008 2009 2010 2011 2012 2013 2014

USA 6.521 9.309 10.938 13.298 13.948 13.300 13.300 14.300

Brazil 5.019 6.472 6.578 6.922 5.573 5.577 6.267 6.190

European Union 570 734 1.040 1.209 1.168 1.179 1.371 1.445

China 486 502 542 542 555 555 696 635

Canada 211 237,7 291 357 462 449 523 510

Rest of World 315 389 914 985 698 752 1.272 1.490

World 13.123 17.644 20.303 23.311 24.404 21.812 23.429 24.570

http://www.afdc.energy.gov/data/10331
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[10, 96, 197]. Microbial conversion of pyrolytic products 
into bio-ethanol is a relatively unexplored area of biologi-
cal research and information on how to separate, hydrolyze, 
neutralize, detoxify, and ferment the levoglucosan from 
pyrolysis oil for the production of bio-ethanol fuel is still 
very limited. This review highlights bio-ethanol production 
from pyrolytic sugars mainly levoglucosan, the challenges, 
possible solutions, and the possibility of microbial engi-
neering for direct utilization of pyrolytic sugars.

Products of pyrolysis

Pyrolysis is a thermo-chemical decomposition of biomass 
material at elevated temperatures in the absence of oxy-
gen or other oxidizing agents. It involves the simultane-
ous changes of chemical composition and physical phase, 
which are irreversible. Typically three different types of 
products are produced from pyrolysis, a liquid products 
known as bio-oil (~17 MJ kg−1), a solid fraction known as 
biochar (~18 MJ kg−1), and a gaseous fraction known as 
syngas (~6 MJ kg−1). The average yields of liquid, char, 
and gaseous products are 60, 25, and 15 %, respectively, 
and the yields mainly depend on the type of biomass and 
process conditions [41, 116]. During the pyrolysis, the 
organic material is thermally decomposed at temperatures 
above 400 °C in the absence of oxygen into vapors, leav-
ing behind solid residual (biochar). The polar and high 
molecular weight compounds condense into a liquid bio-
oil, whereas the relatively low molecular weight com-
pounds remain in the gaseous phase. The physical and 
chemical reactions that take place during the pyrolysis are 
very complex depending on the conditions of the reactor 
and type of biomass [5, 40]. Biomass pyrolysis is an envi-
ronmental friendly biotechnology process as it generates 
zero waste, the liquid fraction (bio-oil) and the solid part 
(biochar) are commercially important, while the gaseous 
fraction (syngas) can be used for internal energy require-
ments [6, 10].

Though this article focuses more on pyrolysis oil and 
its biological conversion to biofuels, but here we will 
also briefly mention about other products of pyrolysis: 
biochar and syngas, which have attracted attention in 
recent times. Biochar is inexpensive, sustainable, and 
easily produced, but still many of its applications are in 
their infancy, further research is required to explore its 
commercial applications. Biochar can be used in many 
applications with remarkable effects. As a precursor 
material, biochar can be used to produce catalyst for 
syngas cleaning, syngas conversion into liquid hydro-
carbons, and solid acid catalyst for biodiesel produc-
tion [152]. Biochar can also be applied as soil amend-
ment to increase soil quality, reduce greenhouse gas 

emission, and as a sorbent to remove organic and inor-
ganic contaminants from soil and water [152]. Biochar-
based activated carbon has shown promising results 
as a gas adsorbent to capture and store carbon dioxide 
[58] and hydrogen [94]. Biochar also has the poten-
tial to replace coal in direct carbon fuel cell systems 
(DCFC) [49, 79]. Recently, many researchers used bio-
char as a raw material for fabricating supercapacitor [8, 
50, 59, 103].

Another useful product of pyrolysis is syngas that 
mainly contains carbon monoxide and hydrogen, with 
small amounts of carbon dioxide, methane, and water. 
Syngas can be used for power generation and heating 
purposes [77, 89]. Many microorganisms can use syn-
gas as a substrate to produce chemicals, such as ethanol, 
butanol, methane, acetate, and biopolymers [77, 120]. 
Clostridium ljungdahlii is a rod-shape, anaerobic bac-
terium that was discovered in 1987, and is considered 
as a model syngas-consuming microorganism due to its 
remarkable capability to convert CO and H2 into ethanol 
and acetate [135, 176]. Several other microorganisms 
including Acetobacterium woodii [169], Clostridium 
aceticum [171], and Clostridium carboxidivorans [102] 
have also been studies for syngas fermentation. All these 
microorganisms are mesophilic and produce ethanol 
through the reductive acetyl-CoA pathway which func-
tional only under anaerobic conditions [33]. The most 
challenging issue regarding syngas fermentation is to 
establish culture conditions which would provide opti-
mum gas–liquid mass transfer in such a way that the 
syngas is readily dissolved and available for microbial 
fermentation [21].

Pyrolysis oil, also a product of fast pyrolysis, com-
monly known as bio-oil or pyrolysis liquid, is dark brown 
or dark green in appearance, free-flowing in nature, and 
chemically very complex, comprising more than 400 
compounds [15, 72, 75, 111, 116]. Chemically bio-oil is 
a complex mixture of water, anhydrosugars, acids, alde-
hydes, furans, and phenols, with yields up to 500  l of 
bio-oil per dry ton of biomass [17]. Table  2 shows the 
chemicals found in bio-oils that are derived from the 
major groups, such as sugars, ketones, carboxylic acids, 
aldehydes, alcohols, and phenolic compounds. The phys-
ical and chemical properties of bio-oil are determined by 
the type of biomass material and the operating conditions 
applied [37]. The water content of bio-oil is 15–30 wt.%, 
which is much higher than the petroleum oil, the high 
water content contributes to phase separation and low 
heating value of bio-oil [116]. Pyrolysis oil also has a 
much higher oxygen content compared to petroleum oil, 
which is partly due to the high water content as well as 
the high concentrations of sugars, aldehydes, carboxylic 
acids, ketones, and phenolics, in overall contributing to 
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the instability, immiscibility, and low heating value of 
pyrolysis oil. For these reasons, the viscosity of pyrolysis 
oil increase with the passage of time due to the evapo-
ration of volatile components, and the chemical reac-
tions that take place between oxygenated compounds to 
achieve equilibrium [43].

Pyrolysis oil: a viable source for platform 
chemicals

The rich chemical composition of pyrolysis oil makes 
it a viable source for the thermo-chemical-based biore-
finery, where both platform chemicals and conventional 
biofuels can be produced [183]. The three important bio-
based chemicals in future are glycolaldehyde, acetic acid, 
and acetol, that are present in pyrolysis oil in consider-
able quantities; wood-derived pyrolysis oils contain about 
5–13  wt.% glycolaldehyde, 0.7–7.4  % acetol [45], and 
3–12 wt.% acetic acid [14, 172]. Glycolaldehyde is used 
as a food browning agent as well as a substrate for mak-
ing renewable ethylene glycol [36]. Acetic acid is used as 
a common solvent and a feedstock for producing cellulose-
derived biopolymers and vinyl acetate [7, 24]. Acetol is 
applied as an intermediate chemical to synthesize glycol, 
acetone, acrolein, propylene, propionaldehyde, and furan 
derivatives [34]. Acetol is also used in food industry to pro-
vide flavor to milk and food [115]. The recovery of these 
bio-based platform chemicals is difficult due to the com-
plex chemical composition of pyrolysis oil and also the 
dilute concentration of these chemicals in pyrolysis oil 
[44]. Distillation is not a good choice due to the chemical 
and thermal instability of pyrolysis oil, and also the minor 
differences in boiling points of the various chemicals pre-
sent in the oils. Therefore, solvent extraction is considered 
a good option [153]. In order to reduce the chemical com-
plexity of pyrolysis oil, water is used to separate it into dis-
tinct polar and non-polar fractions [183].

Glycolaldehyde and acetic acid can be extracted from 
the aqueous polar fraction either by physical or reactive 
extraction [154, 184, 185]. Physical extraction is straight-
forward and back-extraction can also be performed by sim-
ple addition of water; however, physical extraction of gly-
colaldehyde with medium polar organic solvents gives low 
yield and selectivity. Research shows that 9 % of glycola-
ldehyde could be extracted from the aqueous fraction of 
pyrolysis oil derived from a forest residue in a single-step 
extraction with a solvent-to-feed ration of 0.5. Besides 6 % 
of acetol and 15 % of acetic acid were also co-extracted. 
Glycolaldehyde up to 85 % could be recovered in a multi-
stage cross-current back-extraction with water [184]. Phys-
ical extraction using organic solvents has also been widely 
studied to extract acetic acid from the aqueous fraction [56, 
60, 85, 170]. However, physical extraction is thought to be 
rather ineffective, because the distribution coefficients are 
remarkably low and almost temperature independent [68, 
81].

Therefore, reactive extraction with tertiary amines has 
been widely investigated to extract acetic acid from diluted 
solutions of waste water streams [157], fermentation broth 

Table 2   Potential oxygenated chemicals in pyrolysis oil

Source: http://alexandria.tue.nl/extra2/738958.pdf

Compounds Minimum (wt.%) Maximum (wt.%) References

Levoglucosan 0.1 30.5 [12, 37]

Cellobiosan 0.4 3.3 [37]

1,6-Anhydrogluco-
furanose

0.7 3.2 [37]

Fructose 0.7 2.9 [37, 113]

Glycolaldehyde 0.9 17.5 [37, 113]

Acetic acid 0.5 17.0 [12, 37]

Formic acid 0.3 9.1 [113]

Propionic acid 0.1 2.0 [2, 113]

Acetaldehyde 0.1 8.5 [12, 37]

Ethanedial 0.9 4.6 [113]

Methyl glyoxal 0.6 4.0 [37]

Formaldehyde 0.1 3.3 [113]

Furfural 1.5 3.0 [37]

Glyoxal 0.6 2.8 [37]

Methanol 0.4 8.2 [12, 113]

Furfuryl alcohol 0.1 5.5 [37, 113]

Ethanol 0.5 3.5 [37]

Ethylene glycol 0.7 2.0 [113]

Hydroquinone 0.3 1.9 [37]

Acetol 0.2 7.4 [37, 113]

1-hydroxy-2-bu-
tanone

0.3 1.3 [37]

Isoeugenol 0.1 7.2 [113]

Catechol 0.5 5.0 [37]

Syringol 0.7 4.8 [113]

Phenol 0.1 3.8 [113]

Guaiacol 2.8 2.8 [12, 37]

Cresol 1.03 2.5 [37]

4-Methyl-
2,6-dimethoxy-
phenol

0.5 2.3 [37]

Eugenol 0.1 2.3 [75]

Syringaldehyde 0.1 1.5 [37, 75]

3-Ethylphenol 0.2 1.3 [37]

Acetone 0.4 2.8 [37, 75]

2-Cyclopenten-
1-one

0.3 1.5 [37]

2-Furanone 0.1 1.1 [75]

Methyl formate 0.2 1.9 [37]

http://alexandria.tue.nl/extra2/738958.pdf
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[67, 68, 73] and aqueous fraction of pyrolysis oil [108, 
154]. Reactive extraction with tri-n-octylamine (TOA) 
[108] and sodium bisulfite [182] was used to extract acetic 
acid and glycolaldehyde directly from pyrolysis oil. How-
ever, both of these methods did not prove a good choice 
due to significant TOA losses [108], further the stability 
of glycolaldehyde-bisulfite complicates the product recov-
ery [182]. Several possible integrated process designs were 
assessed to recover glycolaldehyde and acetic acid from 
pyrolysis oil via water extraction in Aspen Plus®. These 
process designs were evaluated for their yields, energy 
requirements, and projected total annual costs [35]. One 
such process configuration makes use of 40 wt.% TOA/2-
ethyl-1-hexanol to recover glycolaldehyde and acetic acid 
simultaneously. This process can extract acetic acid up to 
89.4 %, and glycolaldehyde up to 99.8 %, besides it also 
consumes 2.5 times less energy compared to the separate 
glycolaldehyde and acetic acid extraction [35]. In a more 
recent study, a conceptual process was designed for the 
integrated extraction of bio-based glycolaldehyde, ace-
tic acid, and acetol form forest residue- and pine-derived 
pyrolysis oils. This process can extract more than 99 % of 
the acetic acid and glycolaldehyde as well as about two-
third of the acetol present in pyrolysis oils [186].

Pyrolysis oil‑associated sugar: levoglucosan

The anhydrosugar, levoglucosan (LG, 1,6-anhydro-β-d-
glucopyranose) is the most abundant sugar in bio-oil and 
the most attractive fermentation substrate. The thermo-
chemical degradation of cellulose during fast pyroly-
sis leads to the formation of levoglucosan, and hence the 
chemical composition of levoglucosan (C6H10O5) is the 
same as cellulose. Bio-ethanol and other chemicals can be 
produced from levoglucosan if the intermolecular glyco-
sidic bond is broken down to give glucose [192]. LG can 
be obtained in large quantities under appropriate pyrolysis 
conditions using cellulosic materials [18, 151]. Pyrolysis of 
untreated biomass can produce bio-oil that contains up to 
12 % levoglucosan [143, 144], and pretreatment of the bio-
mass to remove cations can result in bio-oil that contains 
up to 30 % levoglucosan [148]. For the purpose of bio-eth-
anol production, levoglucosan is the compound of interest 
and is found in relatively high amount as a source of glu-
cose [195].

The first studies regarding the production of levoglu-
cosan via the process of pyrolysis were  conducted by Pic-
tet and Sarisin [146]. Their study is considered as a first 
attempt to explore the production of glucose and ethanol 
by the process of cellulose pyrolysis. They obtained two 
phases, the aqueous phase (32  wt.%) containing levoglu-
cosan, and a yellow paste of (44  wt.%) during vacuum 

pyrolysis. Although fast pyrolysis of woody biomass mate-
rial (lignocellulosic) produces crude bio-oil (75  wt.%), 
however, only 10–20 % of cellulose is converted into levo-
glucosan, while the remaining is converted into small mol-
ecules and charcoal with less economic importance. Lev-
oglucosan yields of up to 60  % have been reported from 
vacuum or fast pyrolysis of cellulose [98, 118, 166–168]. 
Researchers have found that the addition of small amounts 
of sulfuric acid to lignocellulosic biomass causes a twofold 
increase in levoglucosan yield [168]. However, in most sit-
uations the levoglucosan yield is low. The reasons behind 
low levoglucosan yield from the fast pyrolysis of lignocel-
lulosic biomass are still not clear, however many research-
ers have  conducted studies to investigate the causes of low 
levoglucosan yield [4, 39, 42, 93, 114, 177]. It has been 
reported that even small amounts of alkaline metals, such 
as potassium and sodium, naturally found in biomass can 
decrease the production of pyrolytic sugars due to initiation 
of fragmentation reactions [93]. The alkaline metals natu-
rally found in biomass cause passivation due to the forma-
tion of stable salts, decreasing the overall yield of levoglu-
cosan [88]. This effect of alkaline metals can be reduced 
by washing the biomass with acids [137]. The undesirable 
reactions taking place between cellulose and other compo-
nents of lignocellulosic biomass during the process of fast 
pyrolysis also cause a reduction in the yield of levoglu-
cosan. In a more recent study, Zhou et  al. [201] reported 
that the yield of levoglucosan can further be increased by 
removing minerals and applying a mild acid impregnation. 
Although a combination of acid wash and acid impreg-
nation have been proved to be a promising approach for 
increasing the yield of levoglucosan, however to achieve 
theoretically possible yield of levoglucosan from lignocel-
lulosic biomass by the process of fast pyrolysis is still a 
challenge for the scientific research. Table 3 shows the dif-
ferent pretreatments methods used during biomass pyroly-
sis in order to increase the yield of levoglucosan.

Extraction and hydrolysis of levoglucosan

In order to reduce the chemical complexity of pyrolysis oil, 
firstly it is separated into distinct fractions using water. The 
aqueous extract containing the polar compounds mainly the 
anhydrosugars is then separated from the non-polar frac-
tion [183]. Due to the hydrophilic nature of levoglucosan, 
water is used as it is easily available and also inexpensive 
[129]. Bio-oils have high water content which depends on 
the moisture content of the biomass materials as well as 
the process conditions. The water content for wood bio-
oils [16, 128] is 15–30  wt.%, for hay and straw bio-oils 
[130] is 39–51  wt.%, and for rice husk bio-oils [198] is 
28  wt.%. Pyrolysis oils contain lignin-derived hydrophilic 
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compounds that are soluble in water. Bio-oils separate into 
two distinct phases if the water content exceeds a certain 
limit which typically ranges from 30 to 45 wt.% [181]. The 
phase separation results in the formation of an aqueous frac-
tion rich in sugars along with other hydrophilic compounds, 
and a non-aqueous fraction mainly containing the lignin-
derived less polar compounds [116]. Many researchers have 
worked on the optimization of parameters applied to sepa-
rate bio-oils into aqueous fractions  that would contain the 
highest levoglucosan concentration. Bennet et al. [11] stud-
ied the optimization of the extraction conditions, such as 
temperature, volume of water, and the contact time in order 
to recover maximum levoglucosan into the aqueous phase 
from pyrolysis oil of scots pine material. In their work they 
obtained an aqueous fraction of bio-oil containing levoglu-
cosan up to 87 g/l (7.8 wt.% of bio-oil) by the addition of 
water to pyrolysis oil until it reached 62 mass % at 34 °C 
for 22 min. Chan and Duff [19] applied an optimal ratio of 
water to bio-oil (100  wt.%), that resulted in levoglucosan 
yield of 4.98  wt.% (g levoglucosan/g bio-oil).  Whereas, 
Wang et  al. [187] achieved complete phase separation of 
bio-oil produced from loblolly pine particles using 1:1 (v/v) 
ratio of water to bio-oil, mixed for some time, and then let 
the mixture to settle down for 48 h at ambient temperature. 
Li et al. [98] reported that levoglucosan concentration up to 
12.7  wt.% could be extracted from bio-oil obtained from 
loblolly pine wood particles using a water to bio-oil ratio 
of 1.3:1 at 25 °C and 20 min shaking in a water bath shaker. 
In a more recent study by Zheng et al. [199] recovered an 
aqueous fraction containing 4.1 wt.% of levoglucosan with 
the addition of water to bio-oil in a 1:1 ratio at 50 °C and 
20 min contact time. These findings suggest that phase sepa-
ration behavior of bio-oil depends on the type of biomass 
material used for the production of bio-oil as well as the 
ratio of water to bio-oil, temperature, and contact time.

For bio-ethanol production from lignocellulosic material, 
hydrolysis is used to release the monomeric sugar units from 
the relatively complex lignocellulosic feedstock. In the case 
of   indirect ethanol fermentation from pyrolysis oil, levoglu-
cosan and cellobiosan are first hydrolyzed into glucose which 
are later fermented into ethanol. Hydrolysis can be carried out 
by different methods such as dilute acid, concentrated acid, 
and enzymes, but acid hydrolysis is more favored compared to 
enzymatic hydrolysis due to its low cost. The disadvantage of 
using acid hydrolysis is that it introduces additional inhibitors 
to the system [10, 122, 175].  For two reasons acid hydroly-
sis is favored over enzymatic hydrolysis for the breakdown of 
pyrolytic sugars into glucose;  first is the chemical composi-
tion of bio-oil is very complex, and the second is that cellu-
lases are specific for glycosidic bonds found in cellulose only 
and not the 1,6-anhydro bonds in levoglucosan. Hydroly-
sis of bio-oil with sulfuric acid is considered to be effective 
as well as inexpensive option [10]. Yu and Zhang [195] used 

concentrated sulfuric acid (0.2  M) to hydrolyze a fourfold 
diluted cellulosic pyrolysate of waste cotton, autoclaved it for 
20 min at 121 °C and obtained glucose yield up to 17.35 %. 
They also suggested that glucose concentration increased after 
hydrolysis due to the hydrolysis of other carbohydrate oli-
gomers. It was later reported by Helle et al. [63] that glucose 
concentration exceeds the 100 % theoretical yield of glucose 
(based on the original concentration of levoglucosan) due to 
the hydrolysis of cellobiosan. The cellobiosan is hydrolyzed 
into levoglucosan and cellobiose and finally glucose. Ben-
net et al. [11] reported a maximum glucose concentration of 
216  % (when based on original levoglucosan) by autoclav-
ing bio-oil with 0.5 M sulfuric acid at 121 °C for 44 min. The 
resulting high glucose concentration was supposed to be due 
to the presence of some other glucose precursors in the bio-oil.

Fermentable substrates in pyrolysis oil

Pyrolysis oil is a good source of fermentable substrates, 
such as sugars (levoglucosan and cellobiosan), carboxylic 
acids (mainly acetic acid), glycolaldehyde, and hydroxyac-
etone, that could be converted into lipids, ethanol, and other 
chemicals via biological conversion. Levoglucosan is not 
very abundant in nature, however it can be found in large 
quantities in places where biomass burning or forest fires 
incidents have occurred [151]. Microbial utilization of lev-
oglucosan can occur indirectly by hydrolyzing bio-oil con-
taining levoglucosan to glucose with mild acid treatment 
in solution [63] or solid acid catalysts [132]. Also many 
microorganisms can directly metabolize levoglucosan via 
their direct LG utilization pathways [82, 124, 125, 202].

Indirect fermentation of pyrolytic sugars

Several studies have been accomplished in the past regard-
ing the indirect fermentation of pyrolysis oil to ethanol 
involving separation of the anhydrosugars first using water, 
hydrolyzing the sugars (mainly levoglucosan) to glucose 
applying acids, and then the subsequent fermentation of glu-
cose to ethanol via fermentation microorganisms (Table 4). 
Studies by Prosen et al. [151] evaluated a variety of fungi 
and yeast strains for their potential to ferment bio-oil rich 
in levoglucosan into ethanol. They noticed that a variety of 
fungal and yeast strains could consume both activated char-
coal-treated liquid and acid hydrolysate of the bio-oil. How-
ever, ethanol yield for the acid hydrolysate was much higher 
compared to the activated charcoal-treated liquid, suggest-
ing that acid hydrolysis might be converting levoglucosan to 
glucose, which is a preferred substrate for ethanol fermen-
tation. Since then several scientific studies aiming to pro-
duce biofuels, bio-ethanol in particular, and lipids in general 
via indirect fermentation of bio-oil hydrolysate containing 
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glucose have been accomplished. Results of all these studies 
are quite promising in the context of pyrolysis-based biore-
finery for producing bio-ethanol. Most of the studies regard-
ing the indirect fermentation of pyrolysis oil into lipids and 
ethanol follow the basic general scheme as shown in Fig. 1.

Yu and Zhang [196] pioneered a comprehensive detoxi-
fication study in order to efficiently produce ethanol from 
the acid-hydrolyzed cellulosic pyrolysate of waste cotton. 
Their work employed ten detoxification strategies, either 
alone or in combination with other detoxification methods. 
Among all detoxification strategies, neutralization + diato-
mite shaking gave hydrolysate that was almost completely 
fermented by Saccharomyces cerevisiae 2.399, and Pichia 
sp. YZ-1, with S. cerevisiae produced the highest etha-
nol yield 0.45 g/g glucose (Table 4). In another study, Yu 
and Zhang [196] aimed to find the optimal concentration 
of sulfuric acid that would produce the highest glucose 
yield from pyrolysis oil of waste cotton. The highest glu-
cose yield (17.4 %) was obtained by hydrolyzing the bio-
oil with 0.2 mol/l Sulfuric acid at 121 °C for 20 min. After 
dilution, the acid-hydrolyzed pyrolysate was successfully 
fermented by S. cerevisiae, giving ethanol yield higher than 
the pure glucose control solution which was a bit unusual. 
Their explanation for this phenomenon was there might 
be some other unknown substances also fermented along 
with pyrolysate glucose. However, Prosen et al. [151] also 
observed the same phenomenon with wood pyrolysate. 
In their work, they also investigated the effect of differ-
ent nitrogen sources on fermentation of the hydrolysate 
to ethanol using S. cerevisiae. Among the different nitro-
gen sources tested, the highest ethanol titer (15.1 g/l) was 
obtained with single urea. Their work also evaluated a pre-
adaptation strategy to improve the tolerance of yeast to the 
toxic chemicals present in hydrolysate medium. An adapted 
yeast strain was obtained after 12 times of recycling, which 
fermented much higher hydrolysate glucose concentration 
(95.8  g/l), confirming that the yeast acquired tolerance to 
fermentation inhibitors present in hydrolysate and showed 
47  % increase in ethanol yield compared to its parental 
yeast strain (Table  4). However, they did not provide any 
explanation for the mechanism of tolerance which the yeast 
acquired after the preadaptation step.

Bennet [10] investigated the phase separation of levo-
glucosan using water, the hydrolysis of levoglucosan into 
glucose, and finally the fermentation of the hydrolysate into 
ethanol from pyrolysis oil prepared from Scots Pine feed-
stock. An optimal levoglucosan yield up to 7.8  % of the 
initial bio-oil was obtained at 34  °C and 62  wt.% (total) 
water. Hydrolysis with 0.5 M H2SO4 at 125 °C for 44 min, 
produced the highest glucose yield of 216  % (based on 
original levoglucosan), concluding that other derivatives of 
glucose are also converted into glucose during hydrolysis 
reaction. Hydrolysis solutions up to 20 % were successfully N
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fermented to ethanol by S. cerevisiae T2, using high yeast 
inoculum (1 g/l in flask) under micro-aerophilic conditions. 
The ethanol yield (0.46 g ethanol/g glucose) in this study 
was very near to the theoretically calculated yield for pure 
glucose (0.51 g ethanol/g glucose), suggesting that ethanol 
production from pyrolysis oil is as efficient as producing 
ethanol from pure glucose (Table 4).

Chan et  al. [19] investigated the fermentation of the 
hydrolyzed aqueous fraction from bio-oil provided by 
VTT the Technical Institute of Finland with S. cerevisiae 
T2 under both aerobic and anaerobic conditions. They 
applied a strategy involving the extraction of levoglucosan, 
over-liming, extraction with organic solvents, and adap-
tive evolution of yeast. The optimal ratio for levoglucosan 
extraction was 100 wt.% of water-to-bio-oil that produced 
levoglucosan yield of 4.98  wt.% (g  levoglucosan/g bio-
oil). Hydrolysis in this study was performed as described 
by Bennet et  al. [11]. Bio-oil hydrolyzate treated with 
over-liming (CaOH)2 and fermented at a concentration of 

40 % produced the highest ethanol yield (0.45 g ethanol/g 
glucose). Ethanol yield (0.24  g  ethanol/g glucose) was 
achieved with 25 vol.% tri-n-octylamine in 1-octanol. The 
adapted yeast produced 39 and 26 % better ethanol yields 
compared to the unadapted yeast under aerobic and micro-
aerophilic conditions (Table  4). Over-liming applied as 
a detoxification technique in this study proved to be very 
promising for the removal of fermentation inhibitors.

Lian et  al. [99] developed a comprehensive strategy 
to ferment pyrolytic sugars into lipids and ethanol. Their 
scheme first employed ethyl acetate as a solvent to sep-
arate pyrolytic sugars from phenols, followed by acid 
hydrolysis to produce glucose from the anhydrosugars. 
The hydrolyzed aqueous phase containing glucose was 
neutralized with Ba(OH)2 and further detoxified with 
activated carbon to remove the fermentation inhibitors. 
Finally, the detoxified glucose syrup was fermented with 
yeasts, Cryptococcus curvatus and Rhodotorula glutinis 
to produce lipids, while S. cerevisiae to produce ethanol. 

                                                                                                                          phase rich in phenols 
FAST 

PYROLYSIS 
SOLVENT 

EXTRACTION 

HYDROLYSIS OF 
PYROLYTIC SUGARS 

DETOXIFICATION  

NEUTRALIZATION 

FILTRATION 

FERMENTATION 

Feedstock 

Crude Bio 
oil 

Water or Ethyl Acetate/ 
Bio diesel Blends 

Aqueous Phase Rich 
in Sugar 

Precipitate H2SO4

Bases 

Precipitate 

Detoxified Aqueous Phase 

Ethanol Lipids 

Organic

Fig. 1   Flow chart of the scheme studied for the conversion of lignocellulosic materials into ethanol and lipid via indirect fermentation (Source: 
separation, hydrolysis, and fermentation of pyrolytic sugars to produce ethanol and lipids by Lian et al. [99])
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Yield of ethanol as high as 0.473 g ethanol/g glucose was 
achieved which was much higher than the 0.167 g lipids/g 
sugar of lipids (0.266 g ethanol equivalent/g sugar), sug-
gesting that fermentation of pyrolytic sugars to ethanol is 
more efficient than lipid production. Their detoxification 
strategy involving extraction with ethyl acetate followed 
by hydrolysis and detoxification with activated carbon 
became the basic scheme of detoxification for many stud-
ies after that.

Fermentation of sugar-based substrates, such as glu-
cose, sucrose, fructose, lactose, whey, and xylose have 
been widely studied; however, research on lipid production 
from organic acids is still very limited [26, 28, 53, 70]. In 
another study, Lian et  al. [100] investigated the fermenta-
tion of carboxylic acid present in the aqueous fraction of 
pyrolysis oil as a fermentation substrate for oleaginous 
yeasts to produce lipids. Three oleaginous yeasts, C. curva-
tus, R. glutinis, and Lipomyces starkeyi were evaluated for 
their potential to ferment acetate, formate, hydroxyacetal-
dehyde, phenol, and acetol. After neutralization and detox-
ification, acetate was the main carboxylic acid present in 
the aqueous phase. C. curvatus was selected to ferment an 
aqueous fraction containing 20 g/l of acetate due to its high 
pH and acetol resistance, giving lipid yield of 2.2 g/l, while 
dry biomass was 6.9 g/l. This study proved that acetic acid 
could be successfully utilized for lipid production via yeast 
fermentation.

Lipid production by oleaginous microorganisms has 
attracted attention for the production of bio-diesels [142]. 
The lipids produced by these microorganisms have high 
carbon-to-heteroatom ratios, and are mostly in the form 
of triacylglycerols (TAGs), while some in the form of free 
fatty acids (FAs) [78]. The two most common biofuels pro-
duced from lipids are biodiesel, produced via transesteri-
fication of TAGs, and renewable diesel via hydrotreatment 
[84]. An oleaginous microorganism is the one that accumu-
lates more than 20 % of its dry biomass as oil, mainly in 
the form TAGs and FAs lipids [78, 155]. A detailed study 
by Subramanium et  al. [173] reported the following: 14 
genera of microalgae with highest reported oil accumula-
tion ranging from 20 to 77 % of the dry biomass, the high-
est noted for Schizochytrium sp. 50–77 %; four genera of 
bacteria with oil contents 24–78 % of dry cell weight, most 
notably Arthrobacter sp. 78 % from glucose [86]; four gen-
era of yeast with oil accumulation ranging from 58 to 72 % 
of dry weight, the highest achieved by strains of R. glutinis; 
and four genera of molds with oil amounts ranging from 
57 to 86 %, the highest level accumulated by Mortierella 
isabellina [78]. The theoretically calculated lipid yield is 
0.32 g/g sugar from glucose and 0.34 g/g sugar from xylose 
[141]. However, the practical yield after biomass produc-
tion and other products is mostly considered to be around 
0.22 lipid/g glucose [97, 189].

Direct fermentation of pyrolytic sugars

However, it has been found that many eukaryotic and 
prokaryotic microorganisms can directly metabolize levo-
glucosan to valuable products through their direct LG uti-
lization pathways [82, 124, 125, 202]. Searches for micro-
organisms exhibiting levoglucosan-utilizing pathways 
have identified many microorganisms that can metabolize 
levoglucosan as the sole carbon and energy source [82]. 
Studies have proved that the levoglucosan utilization path-
way that exists in eukaryotic organisms is more developed 
and advanced than the one found in prokaryotic microor-
ganisms. Prokaryotic microorganisms such as bacterium, 
Arthrobacter sp. can metabolize levoglucosan in at least 
three enzymatic steps using NAD+ as a cofactor. This was 
rather a novel enzyme discovery which followed a three-
step reaction as shown in Fig. 2b. In the first step, levoglu-
cosan is dehydrogenated into 3-keto-levoglucosan, then 
to 3-keto glucose, and lastly to d-glucose by using NAD+ 
as an electron acceptor [125, 202]. In contrast, eukary-
otic organisms such as filamentous fungi and yeast strains 
convert LG directly into glucose-6-phosphate via levoglu-
cosan kinase (LGK) as shown in Fig.  2a [82, 125, 202]. 
The levoglucosan kinase breaks the 1,6-anhydro bond and 
phosphorylate it into glucose-6-phosphate in the presence 
of magnesium ion and ATP [82]. A series of oxidation reac-
tions take place to convert glucose-6-phosphate into pyru-
vate and finally to acetyl-CoA via pyruvate dehydrogenase 
complex [165]. During anaerobic conditions, the pyruvate 
is converted into acetaldehyde by pyruvate decarboxylase, 
and finally acetaldehyde is converted into ethanol by alco-
hol dehydrogenase using NADH as cofactor [145]. Due to 
the presence of LGK, a variety of fungal and yeast strains 
have the ability to use levoglucosan directly as their pri-
mary source for carbon and energy [124, 125, 151]. Asper-
gillus terreus K26 ferment levoglucosan to itaconic acid 
[124], while Aspergillus niger CBX-209 can grow on levo-
glucosan-containing medium and convert levoglucosan into 
citric acid [202]. The exciting thing in both of these exam-
ples was the similar fermentation rate and product yield 
compared to pure glucose, suggesting that levoglucosan 
can be consumed by microorganisms as efficiently as con-
ventional 6-carbon sugars (glucose or fructose).

Biochemical characterization of LGK from A. niger 
CBX-209 has shown, LGK exhibit a strict preference for 
levoglucosan, the optimum temperature and pH for enzyme 
activity are 30  °C, and 9.3, respectively [202]. Unlike 
other hexokinases, LGK is inhibited by HgCl2, CoCl2, and 
Mg-ADP, but not by glucose-6-phosphate in micromolar 
concentrations; however, high concentrations of glucose-
6-phosphate up to 10  mM might have a mild effect on 
LGK activity [202]. The Km value of LGK for levoglu-
cosan is 71.2 mM in A. niger CBX-209 [202] and 68 mM 
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in L. starkeyi [32]. The comparatively higher Km value of 
LGK for levoglucosan results in lower product yield due to 
incomplete substrate utilization [32, 92].

Genetic engineering for direct levoglucosan 
utilization

Nature itself explains to us the conversion of biomass 
into useful products such as ethanol by giving us the gift 
of many organisms possessing the innate capacity. These 
organisms, which are isolated from nature, have been found 
to be not as efficient as the microorganisms used in indus-
trial processes. However, often these native microorganisms 
lack some genetic and biochemical pathways, and therefore 
huge scientific investment is required to make them useful 
biological factories [1]. Previous studies have shown that 
S. cerevisiae and Escherichia coli are the preferred indus-
trial microorganisms for genetic and metabolic engineering 
manipulations due to their well-established genetic systems 
and a long track record of industrial applications [1].

Before fermentation, the pyrolytic sugars, mainly 
levoglucosan and cellobiosan present in bio-oil must be 

hydrolyzed into glucose using sulfuric acid, which is not 
only expensive but also produces heat and results in the for-
mation of additional inhibitors [63]. Previously, research-
ers have shown that yeast strains also have the potential to 
ferment activated charcoal-treated pyrolysis tar to ethanol 
[151]. However, the unfortunate thing about the naturally 
existing levoglucosan utilizers is the fact that most of these 
microorganisms do not produce ethanol from levoglucosan 
or even if some produce ethanol, the yield is extremely low. 
For example, yeasts species such as Candida utilise, Sac-
charomyces diastaticus, and Schwanniomyces castellii fer-
mented partially purified levoglucosan into ethanol with a 
yield of only 10  % compared to 48  % with pure glucose 
[151].Therefore, bio-catalysts that have the ability to uti-
lize levoglucosan directly are more desirable for industrial 
applications.

The two best possible strategies could be to search for 
new organisms having the capabilities of utilizing levoglu-
cosan directly, but it seems quite laborious and time con-
suming work. The second option is to exploit the genetic 
engineering tools for importing the direct levoglucosan 
pathway into existing fermentation organisms. A novel 
yeast strain L. starkeyi has the enzyme levoglucosan kinase 
that shows high catalytic activity for levoglucosan and con-
verts it into glucose-6-phosphate [126]. A little research has 
been done on engineering the direct levoglucosan utiliza-
tion pathway into other fermentation organisms. Dai et al. 
[32] identified, cloned, and expressed a novel cDNA of 
levoglucosan kinase gene from yeast L. starkeyi YZ-215 in 
E. coli, the resulting strain used levoglucosan as the sole 
carbon source on minimal media. In a more recent study, an 
engineered ethanologenic E. coli was produced by cloning 
the LGK gene after codon optimization. The engineered E. 
coli not only consumed levoglucosan as a source of carbon 
and energy but also fermented it into ethanol [92]. These 
studies show that existing bio-catalysts can easily be trans-
formed into direct levoglucosan utilizers by application of 
genetic engineering tools.

Fermentation inhibitors in bio‑oil

Despite the fact that bio-oil contains various ferment-
able substrates such as levoglucosan, acetic acid, glycola-
ldehyde, and hydroxyacetone,  however  the fermentation 
of these substrates to useful chemicals is not so easy and 
straightforward. The pretreatment of biomass during fast 
pyrolysis, and the acid hydrolysis (to produce glucose from 
levoglucosan) step later result in the production of various 
substances that are not fermentation friendly. These sub-
stances inhibit or reduce the rate of fermentation by inhib-
iting the growth of the microorganisms through differ-
ent mechanisms. To date, bio-oil has not been thoroughly 

Fig. 2   Enzymatic reactions for the levoglucosan conversions to glu-
cose-6-phosphate (a) and to D-glucose (b) [82, 125]
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characterized, and potential fermentation inhibitors are not 
well known. The fermentation inhibitors found in bio-oil 
include furans, phenols, aldehydes, and organic acids [77]. 
Research has been conducted in the past and still going on 
to identify the specific inhibitors, reduce the bio-oil toxic-
ity, and improve the fermentation of fermentable substrates 
in bio-oil. Studies have also shown that organic acids (for-
mic acid, acetic acid, and levulinic acid,), furfural, and 
5-hydroxymethylfurfural (HMF) inhibit yeast fermentation 
[64, 83, 90, 133, 139, 140]. Research by Lian et  al. [99, 
100] also confirmed that the aforesaid compounds were 
inhibitory to yeast growth during ethanol production from 
pyrolytic sugars. Their findings show that not only the non-
fermentable chemicals found in bio-oil are fermentation 
inhibitors, but the fermentable substrate such as acetic acid 
also shows inhibitory effects [100]. The mode of inhibi-
tion for various compounds in bio-oil is different from each 
other. In order to address the inhibition problem in an effi-
cient way, the possible mechanism of action of these inhibi-
tors need to be understood.

Weak acids such as formic acid, acetic acid, and lev-
ulinic acid are formed due to the de-acetylation of hemi-
celluloses present in biomass or due to the breakdown of 
lignin and sugars at the time of pretreatment. These acids 
are near their pKa values when fermentation pH is 5.5, and 
found in equal proportions of associated and dissociated 
forms. Formic acid has been found to negatively affect cell 
replication in Rhodosporidium toruloides and Debaryomy-
ces hansenii [48, 139]. A possible explanation as to how 
weak acids inhibit fermentation process is that un-dissoci-
ated weak acids can diffuse across the cell membrane and 
dissociate in cytosol due to neutral pH, causing a drop in 
intracellular pH resulting in a decrease in ATP synthesis 
for the microorganism to survive. The production of weak 
acids is difficult to prevent as they are intrinsic to biomass, 
but optimizing pretreatment conditions can significantly 
reduce their formation [71, 83, 139, 200]. Acetic acid is not 
only a major fermentation substrate but also a fermentation 
inhibitor [100], exhibiting a similar mechanism of inhibi-
tion with formic acid [71, 147].

During extreme pretreatment conditions, furfural and 
5-hydroxymethylfurfural are produced from pentose and 
hexose sugars respectively.  At low concentrations, yeast 
can metabolize furfural to furfuryl alcohol via aldehyde 
reductases which is less inhibitory and produce NAD+ 
resulting in a decrease glycerol synthesis. However, fur-
fural and HMF in high concentrations interfere with cell 
replication, causing a prolong lag period as well as inhib-
iting anaerobic growth and ethanol productivity [46, 83, 
104, 138]. Phenolic compounds such as vanillin, ferulates, 
and syringaldehyde, produced due to lignin decomposition 
are hydrophobic in nature making them capable of attach-
ing to cell membrane of microorganisms resulting in loss 

of cell integrity, denaturation of membrane-associated 
enzymes, and ultimately reduce ethanol productivity [91]. 
Low molecular weight phenolic compounds act in a similar 
way to weak acids leading to disruption of normal cellular 
acidity [62, 83, 195]. Inhibition of fermentation is not only 
caused by the inhibitors found in bio-oil, but other sub-
stances such as high concentration of sugars, ethanol, and 
salts also negatively affect microbial fermentations. Higher 
amounts of sugars in media cause an osmotic stress for 
yeast leading the water to flow out of the cells and hence 
prolonging the lag phase at the beginning of fermentation 
[9, 66].

To overcome this problem, continuous or fed-batch fer-
mentation should be applied in order to supply the sugars at 
the rates at which the yeast metabolize it. High salt concen-
trations which are formed due to pretreatment and neutrali-
zation of biomass before hydrolysis and fermentation can 
also lead to inhibition of fermentation. This problem can be 
addressed with the use of a salt-tolerant organism or using 
pretreatment conditions that do not require significant pH 
adjustments. Although yeast are robust organisms and are 
more ethanol resistant than bacteria, but  even then higher 
concentrations of ethanol can also inhibit yeast growth 
due to damage of the cell membrane. Latest studies have 
shown that many inhibitor compounds interact synergisti-
cally  leading to microbial growth inhibition [83, 139, 140, 
188].

Improving fermentability of bio‑oil hydrolysates

The challenge for fermentation of pyrolytic sugars obtained 
from bio-oil is the presence of various inhibitory com-
pounds that severely inhibit microbial fermentation. Vari-
ous strategies have been reported in previous research, such 
as solvent extraction, adsorption on adsorbents (activated 
carbon, bentonite, zeolites and diatomite), over-liming, 
distillation, and air stripping that can be used to remove 
the toxic inhibitors from bio-oil hydrolysates. Another 
approach is to develop microorganisms that can grow well 
even in presence of inhibitors and can resist toxic com-
pounds present in bio-oil. Table  4 shows a detailed sum-
mary of the previous research work on ethanol production 
from pyrolysis oil and the strategies used to improve the 
fermentation of pyrolytic sugars.

Solvent extraction

The first approach is to use solvents to fractionate bio-
oil into two distinct fractions (aqueous and oil fraction) 
depending on their relative solubilities. Various polar and 
non-polar solvents can be used to remove the inhibitor 
chemicals from bio-oil hydrolysate. The aqueous phase 
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will be rich in fermentable sugars and the oil phase will 
contain most of the inhibitors [150]. Various organic sol-
vents have been used so far. Lian et al. [99] used ethyl ace-
tate to remove most of the phenolic compounds and ace-
tic acids successfully from bio-oil, and the aqueous phase 
rich in sugars was used for fermentation by three differ-
ent yeasts obtaining a yield of 0.473  g  ethanol/g glucose 
of the theoretical yield of ethanol that   could be obtained 
from glucose. Their results clearly demonstrated that the 
fermentation of pyrolytic sugars for ethanol production is 
more efficient than producing lipids. A co-solvent system 
of tri-n-octylamine and 1-octonal was used by Chan and 
Duff [19] resulted in 90  % removal of acetic acid, while 
100  % glucose was retained, and the ethanol production 
was increased by 0.24 (g ethanol/g glucose) using 40  % 
hydrolysate. Wang et al. [187] used non-polar hexane and 
polar linoleic acid to remove the inhibitors from bio-oil 
hydrolysate, and their method was moderately successful. 
In more recent study, Luque et  al. [106] used a 1:2 wt.% 
of bio-oil filtrate and ethyl acetate to remove the yeast 
growth inhibitors e.g., phenolic compounds, furans, and 
aldehydes obtaining 96 % of the theoretical yield in micro-
titer plate wells. According to Luque et al. [106], extraction 
with ethyl acetate is relatively selective, largely removes 
the other organic compounds, and there is a no significant 
loss of levoglucosan. In another study, Hassan et  al. [61] 
compared the efficiency of n-butanol and ethyl acetate on 
removing phenolic compounds and other enzymatic inhibi-
tors from aqueous fraction bio-oil and they found that 
n-butanol solvent was more effective than ethyl acetate in 
removing such compounds. Sukhbaatar et al. [174] recently 
used an 1.8:1 ratio of n-butanol and bio-oil, fermentation 
inhibitors (acetic acid, furfural and HMF) were success-
fully removed, and ethanol yield reached up to 98 % of the 
theoretical yield in shake flask fermentation. These studies 
indicate solvent extraction is a useful method for removal 
of inhibitors and has wide scope of applications in bio-eth-
anol production from bio-oil, but on the other hand some 
organic solvents are expensive, their dissolution in bio-oil 
can create a further inhibition issue, multiple extractions 
might be required, time consuming, and generates large 
volume of organic wastes.

Adsorption on absorbents

Activated carbon is a common method used to remove 
toxic compounds from liquids. Factors such as temperature, 
duration of contact, and dosage of carbon affect adsorption 
on activated carbon [122]. It has been reported in previous 
research that the removal of lignin degradation products, 
especially phenolic compounds were increased sixfold 
when temperature of hemicellulose hydrolysate was raised 
from 20 to 40 °C, while applying low pH [121]. Adsorption 

on activated carbon was used by Prosen et  al. [151] to 
remove phenolic compounds and improve fermentability. 
They noticed that variety of fungal and yeast strains can 
utilize bio-oil rich in levoglucosan for ethanol production. 
Their study indicated that some of the fungi and yeast could 
ferment activated charcoal-treated liquid and acid hydro-
lysate of bio-oil; however, ethanol yield was much higher 
for acid-hydrolyzed bio-oil than the un-hydrolyzed bio-oil 
liquid suggesting the acid hydrolysis of levoglucosan to 
glucose which is a preferred substrate for ethanol fermen-
tation. Yu and Zhang [197] carried out  an extensive work 
on the fermentation of cellulosic pyrolysate of waste cot-
ton containing high amount of levoglucosan  while apply-
ing ten detoxification strategies. They basically   applied 
neutralization with Ca(OH)2 and over-liming with Ca(OH)2 
in combination with activated carbon, diatomite, bentonite, 
and zeolite (10  % w/v) shaking for 80  min, respectively. 
According to their study, neutralization plus diatomite 
shaking produced the best ethanol titer and yield (16.1 g/l 
ethanol, 0.45  g  ethanol/g glucose) followed by neutrali-
zation plus activated carbon shaking (15.4  g/l ethanol, 
0.45  g  ethanol/g glucose) and neutralization separately 
(15.1  g/l ethanol, 0.45  g  ethanol/g glucose). Over-liming 
plus diatomite shaking was also proved to be good option. 
Lian et  al. [99, 100] also used a combination strategy by 
extraction with ethyl acetate followed by adsorption on 
activated carbon and neutralization to remove acetic acids 
and phenols.  In another study Lian et al. [99] used an acti-
vated carbon/bio-oil hydrolysate ratio of 1:1 and kept the 
mixture at 4 °C overnight, a colorless liquid was obtained 
after filtration. The GC/MS analysis of the bio-oil aqueous 
phase after detoxification showed no peaks of the inhibi-
tors. The detoxified aqueous solution was colorless indicat-
ing that colored compounds were also eliminated, but their 
study does not indicate whether there was also any loss 
of fermentable sugars. The detoxified aqueous phase was 
fermented with three different yeasts for ethanol and lipid 
production obtaining yields of 0.473  g ethanol/g glucose 
and 0.167 g lipids/g sugar, respectively. Wang et al. [187] 
used a 1 % (w/v) ratio of activated carbon and the aqueous 
solution, the resulting slurry was kept overnight at 4 °C and 
obtained a colorless liquid after filtration. Their detoxifica-
tion procedure resulted in a 92  % decrease in acetic acid 
concentration and 78 % decrease in the furfural concentra-
tion but they also saw a 3.8 % loss in glucose level which 
is a significant loss of fermentable sugars. Liang et al. [101] 
used a combined approach of activated and metabolic evo-
lution to improve microalgae growth significantly on bio-
oil rich in acetic acid concentration to produce lipids. All 
these studies indicate that the application of activated car-
bon to remove fermentation inhibitors seems very promis-
ing, however further studies are required to find the optimal 
concentration of activated carbon along with the effect of 
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contact time as well temperature that would largely remove 
the inhibitors while maintaining maximum sugar level.

Over‑liming

Over-liming is an extensively used method for detoxifica-
tion of cellulose hydrolysate [71, 87, 131]. Martinez et al. 
[109]   applied over-liming for detoxification of hemicel-
luloses hydrolysate, and  observed that furans (51 %) and 
phenolic compounds (41 %) were removed along with 9 % 
sugar. During the process of over-liming, the pH of bio-
oil hydrolysate, which is usually around 2–3, is adjusted 
to around 10–11 with the addition of bases that result in 
the formation of a solid precipitate containing phenol- and 
furan-derived compounds  that are later removed by filtra-
tion. Over-liming utilizes high temperatures around (80 °C) 
and a relatively long treatment time (usually 3 h) that can 
result not only in the removal of fermentable sugars, but 
also cause a twofold to threefold increase in the concentra-
tions of acetic and formic acid [69, 197]. As some of the 
inhibitors found in cellulose hydrolysate are similar to the 
inhibitors found in bio-oil hydrolysate, the same method 
was also used to carry out detoxification of bio-oil hydro-
lysate. Yu and Zhang [197] carried out an extensive work on 
reducing the effect of inhibitors using cellulosic pyrolysate 
of waste cotton. They employed over-liming alone and in 
combination with activated carbon shaking, diatomite shak-
ing, bentonite shaking, and zeolite shaking that increased 
ethanol yield by 5–13 %, with the loss of 0.6–1.03 % glu-
cose which is not very significant. However, another study 
reported a 20  % loss of sugars by  applying over-liming 
treatment to bio-oil hydrolysate, and this was supposed to 
be due to the calcium ion-catalyzed degradation of sugars 
in an alkaline environment [69]. Chan and Duff [19] used 
Ca(OH)2 over-liming to remove furans  along with phenols, 
and found that over-liming improved the ethanol yield by 
0.19 ± 0.01 and 0.45 ± 0.05 (g ethanol/g glucose) at 50 and 
40  % bio-oil hydrolysate concentration respectively. Chi 
et  al. [25] also examined the effect of Ca(OH)2 over-lim-
ing for detoxification of pyrolytic sugar syrup and noticed 
that over-liming treatment removed phenolic compounds 
either partially or completely. The detoxified sugar solu-
tion was later subjected to fermentation by an engineered 
E. coli resulting in a tenfold improvement in ferment-
ability of the pyrolytic syrup. These studies indicate that 
over-liming with Ca(OH)2 is a useful method for detoxifi-
cation,  however  a recent study conducted by Rover et al. 
[161]  observed that there  was 7.0 ± 0.2 % loss of sugars 
due to over-liming, further the precipitate formation makes 
it a complicated procedure. In their study, they carried out 
over-liming in three different ways [Ca(OH)2, NaOH, and 
NH4OH], and all three were equally successful in eliminat-
ing furans, but over-liming by NaOH was more favorable 

showing no loss of sugars, removing three times more phe-
nol and more vanillin along with guaiacol compared to the 
other three methods. Ethanologenic E. coli successfully 
fermented the detoxified sugars (2 wt.%), however this lit-
tle sugar consumption is still not commercially attractive 
for ethanol production.

Air stripping and distillation

Air stripping is a common method used to remove volatile 
organic compounds (VOCs) by converting them into gase-
ous forms. This method is commonly employed to remove 
VOCs from wastewater. Volatile organic compounds have 
high vapor pressure and low aqueous solubilities and there-
fore easy to be removed by air stripping. Henry’s law gov-
erns the removal of VOCs by air stripping. The removal of 
VOCs by air stripping is directly proportional to the Hen-
ry’s constant, the higher the Henry’s constant the greater 
the removal of VOCs. Higher temperatures increase Hen-
ry’s constant and therefore air stripping becomes more 
efficient. Other factors like pH and residence time can also 
affect air stripping efficiency. Low pH causes the removal 
of volatile acids, while at high pH (pH 10) ammonium can 
also be removed, however, this method could cause the 
evaporation of water as well [63, 64]. Wang et  al. [187] 
used air stripping to remove acetic and formic acids at tem-
peratures of 25 and 60 °C by forcing air into flasks contain-
ing bio-oil solution. The concentration of glucose, acetic 
acid, and furfural was supposed to decrease but in contrast 
it increased. They found a 2.2 and 87 % increase in glucose 
concentration at 25 and 60  °C, respectively. Acetic acid 
concentration increased by 16.7 and 39.6 %, while furfural 
increased by 39.6 and 117.9  % at 25 and 60  °C, respec-
tively. This increase might be due to the evaporation of 
water from bio-oil. They concluded that air stripping is not 
an effective method for bio-oil detoxification. The method 
of distillation separates various compounds on the basis 
of differences in their boiling points, but due to the com-
plex chemical nature of bio-oil, distillation cannot be used 
alone for bio-oil detoxification. Distillation has been used 
in combination with solvent extraction or activated carbon 
to remove inhibitors [19, 100, 184].

Microbial removal

This method of detoxification is more desirable as it 
involves the removal of fermentation inhibitors by exploit-
ing the capabilities of microbes to digest phenolic and furan 
containing compounds without consuming glucose. The 
bright aspect of this method is that it would not introduce 
any additional inhibitors to the aqueous fraction, while 
maintaining glucose level at the same time but the limita-
tion with this method is that only few microorganisms are 
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known to exhibit such a remarkable potential. However, 
recently a bacteria Cupriavidus basilensis has been discov-
ered that has the potential to eliminate the toxic compounds 
without consuming glucose. The bacteria have the capabil-
ity to consume furfural, hydroxymethyl furfural, toluene, 
dichlorophenol, phenol, and benzene without utilizing glu-
cose. Additionally the bacteria has been found to produce 
2,5-furandicarboxylic acid from furan-derived compounds 
[191]. This compound can replace terephthalic acid used 
to produce aromatic polymers and polyesters due to its 
renewable nature. Further research in this area would have 
dual benefit resulting in the production of a useful building 
block chemical and at the same time detoxify the aqueous 
bio-oil fraction. Due to its positive attributes, 2,5-furandi-
carboxylic acid is viewed as a priority chemical for future 
green energy by the US Department of Energy [13].

Adaptive evolution for increasing tolerance 
in bio‑catalysts

In order to efficiently remove the microbial growth inhibi-
tors from bio-oil hydrolysate, a combination of different 
detoxification methods is required. Therefore, developing 
microorganisms exhibiting tolerance to the toxic inhibi-
tors is more desirable and cost effective to the multi-treat-
ment detoxification procedures. Adaptive evolution refers 
to mutations that occur in the DNA of an organism upon 
exposure to environmental challenges. This approach can 
be used to develop microorganism having abilities to grow 
in the presence of inhibitors present in bio-oil hydrolysate. 
There would be no need of additional detoxification steps 
if the adapted microbe acquires the ability to grow and pro-
duce ethanol in the presence of inhibitors [110]. The fac-
tors affecting the growth of microorganisms are tempera-
ture, substrate limitation, and pH [64, 113]. The process of 
adaptation is still not clearly understood, but several mod-
els have been proposed to explain the process. The first one 
is the directed mutation model in which mutations directly 
ease the stresses posed by the environmental conditions. 
Next is the cryptic growth model, here the mutations take 
place in a random manner and are not caused by the envi-
ronmental conditions. In the hyper-mutation model, muta-
tions occur across the genome which stimulate adaptive 
and non-adaptive evolution. Most of the mutations are not 
helpful in the adaptation process but some are useful and 
help the organism to survive [51, 110].

These models can be applied to microbial growth cul-
tures. Microorganisms can be cultured for several genera-
tions under non-stop environmental stresses to obtain resist-
ant strains to furan and phenol derivatives [51]. The growth 
of microorganisms in toxic bio-oil can be greatly improved 
if they are initially grown on media containing small quan-
tity of bio-oil and then slowly increasing the dose of bio-oil 

in the media for several generations. This process is known 
as directed evolution as it speeds up the survival of the fit-
test according to Darwinian law of natural selection [95]. 
The process of directed evolution typically takes place in 
three phases; diversification, selection, and amplification. 
The first one is diversification in which random mutations 
can be used to speed up the process of diversification. In 
the second step, mutants with desired traits are selected 
and screened [136, 156]. During the final step, the screened 
microorganism is grown in bulk quantities for characteriza-
tion and maintenance [136]. These steps are repeated again 
and again for many times in order to obtain microbes with 
desirable traits [136, 197]. Yu and Zhang [197] carried out 
adaptation of S. cerevisiae to the hydrolysate medium for 
12 times and observed 47  % increase in ethanol produc-
tion compared to its parental strain which clearly explains 
the potential of adaptive evolution in order to improve fer-
mentation of bio-oil hydrolysate. In another study, adaptive 
evolution was applied to increase the tolerance of yeast to 
inhibitors in bio-oil hydrolysate. The adapted yeast pro-
duced 39, and 26 % better bio-ethanol yields under aero-
bic and micro-aerophilic conditions, respectively [19]. But, 
however, there was no explanation for the mutations that 
provided the yeast with resistance to inhibitors.

Economic feasibility of pyrolysis technology

Many developing countries have already started using 
food crops such as maize, sugarcane, and soybean for the 
production of biofuels and ethanol but this seems to be 
unsustainable in the long run [38, 105]. A vast amount 
of scientific research is focusing on developing method-
ologies with which biomass can be converted into hydro-
gen. Some other areas of research have also been discov-
ered, but no such economically attractive option has been 
found yet [164, 194]. Currently, the widely available 
lignocellulosic feedstock has attracted much attention 
as a renewable and sustainable source for the production 
of bio-ethanol via fast pyrolysis [65]. There are some 
technical and non-technical challenges that need to be 
addressed before the commercial applications of pyroly-
sis processes for producing bio-based products. The com-
mercialization of pyrolysis technology on an industrial 
scale primarily depends on its economic viability [179]. 
Currently, the production cost of pyrolytic products is 
more than the production of fossil fuel. Pyrolysis tech-
nology involves two types of costs: (1) fixed or capital 
cost that includes facilities development such as land, 
road, transportation, feedstock storage, handling, and the 
necessary equipment. The capital cost is about 10–20 % 
mainly due to the pyrolysis reactors; (2) the variable cost 
includes biomass harvesting, collecting, cutting, drying, 



1573J Ind Microbiol Biotechnol (2015) 42:1557–1579	

1 3

grinding, and storage [76, 119]. Studies in the recent 
past have shown that fast pyrolysis has a great poten-
tial to replace the dependence on fossil fuels. Recently, 
a comparative cost study has revealed that fast pyroly-
sis is more cost effective than gasification or hydrolysis 
technology for the production of biofuels. In this study, 
transportation fuels in the near-future (5–7  years) were 
approximated to cost $2–3/gallon gasoline equivalent 
(gge) for pyrolysis, $4–5/gge for gasification, and $5–6/
gge for cellulosic ethanol through enzymatic hydroly-
sis [3]. Sandvig et  al. [162] found fermentation of bio-
oil derived sugars to be economically fascinating when 
combined into the production of both bio-power and bio-
based chemicals. These studies attract an increased inter-
est in the production of pyrolytic sugars via fast pyroly-
sis for generating bio-ethanol. A recent comparative cost 
analysis showed fast pyrolysis to be an attractive means 
of biofuels production relative to both enzymatic hydrol-
ysis and gasification [3]. But the pyrolysis technology 
still needs to combat some challenges as the technology 
for the conversion of lignocellulosic biomass to ethanol 
is not well established as the technology for converting 
edible crops to ethanol. Further research is required to 
understand the pyrolysis processes better for converting 
biomass to ethanol on a large scale. Many pyrolysis tech-
nology companies are close to getting commercial sta-
tus. In North America, Ensyn, and DyanaMotive are the 
prominent ones, using forest residues, agriculture waste, 
etc., as the source material. Despite the rapid progress in 
recent times, the pyrolysis technology still has to over-
come some techno-economic and social challenges in 
order to compete with fossil fuels [76].

Conclusion

Due to the vast availability of lignocellulosic biomass, 
pyrolysis-based conversion of pyrolytic sugars into biofuel 
and other value added chemicals exhibit promising poten-
tial for commercial applications due to its socio-economic 
advantages. Extensive scientific research is required to 
address the issue of detoxification by optimizing the pre-
treatment conditions in order to reduce the formation of 
inhibitors, new strategies of bio-oil detoxification with 
minimal loss of fermentable sugars need to be explored and 
developed. Metabolic engineering and adaptive evolution 
of microorganisms could be extremely helpful in combat-
ing the detoxification problem and improving fermentabil-
ity of the bio-oil hydrolysate. New microorganisms having 
direct levoglucosan-utilizing pathways should be searched 
and isolated from the environment. Modifying suitable fer-
mentation biocatalysts for direct levoglucosan utlization 
along with tolerance engineering could not only let these 

microorganisms grow in the presence of inhibitors but also 
convert the anhydrosugars directly into ethanol and lipids.
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